$66.38 €75.23

Последние новости

15.08.2018, 18:01 «Одна история – одна победа»: старт международного автопробега Россия – Болгария состоится в Москве

14.08.2018, 17:29 Козельск отпраздновал 780-летие со дня героической обороны города от орды хана Батыя

14.08.2018, 15:57 Московскую систему образования поставили в пример

14.08.2018, 09:48 Более 80 мероприятий состоится в рамках фестиваля «Держи баланс» в Никеле

14.08.2018, 09:07 Патриарх Кирилл примет участие в III Международном православном форуме в Москве

14.08.2018, 08:12 ГК СЕРКОНС рассказала о своей деятельности на сессии международного проекта в Ессентуках

14.08.2018, 01:19 III Международный фестиваль «Табуретка» пройдет в заполярном Мончегорске

13.08.2018, 17:21 Эксперт прокомментировал идею Балакина потребовать компенсацию бизнесу за снос павильонов

13.08.2018, 17:03 Сервис Плейсмент сделает самостоятельное путешествие по странам интересным и выгодным

13.08.2018, 17:26 Столичный Депобразования подводит итоги двух опросов среди студентов Школы будущего директора

ВСЕ НОВОСТИ

Ученые повысили температуру сверхпроводимости в легированном Q-углероде

Наука

Команда ученых Университета Северной Каролины значительно увеличила температуру, при которой материалы на основе углерода действуют как сверхпроводники. Исследователи во главе с Джей Нарайан использовали в своих экспериментах легированный бором Q-углеродный материал.

Предыдущий рекорд сверхпроводимости в алмазе, легированном бором, составлял 11 Кельвинов, или минус 439,60 градуса по Фаренгейту. Было обнаружено, что легированный бором Q-углерод является сверхпроводящим от 37K до 57K, что составляет минус 356,80 градусов по Фаренгейту. «Переход с 11K до 57K является большим скачком для обычной сверхпроводимости BCS», говорит Нарайан.

Обычные материалы, которые проводят электричество, во время передачи теряют много энергии. Известно, что сверхпроводники могут обрабатывать гораздо более высокие токи на квадратный сантиметр и практически не терять энергию, однако они обладают этими свойствами при низких температурах. Идентификация способов достижения сверхпроводимости при более высоких температурах без применения высокого давления является активной областью исследований материалов.

Чтобы сделать Q-углерод, легированный бором, исследователи делают смесь из аморфного углерода и бора. Затем она подвергается воздействию лазерного импульса, продолжающегося всего несколько наносекунд.

«Благодаря включению бора в Q-углерод мы устраняем ферромагнитные свойства материала и придаем ему сверхпроводящие свойства», говорят авторы открытия. «Мы планируем оптимизировать материал, чтобы повысить температуру, при которой он является сверхпроводящим».