$89.14 €96.86

Последние новости

10.03.2025, 08:28 Помимо цифровых технологий, устойчивость расширяет финансы с использованием ИИ 

10.03.2025, 08:11 HUAWEI Mobile Services сообщает о твердой приверженности трансформации будущего туризма на MWC 2025 

09.03.2025, 20:02 GTN: 99,9% обработано: Как предложения НПКСК работают в консультативной демократии 

07.03.2025, 22:51 Исследования Atomic Capital свидетельствуют: зарубежные компании готовы возвращаться в Россию

04.03.2025, 22:19 Я выбираю себя: когда пора менять работу?

04.03.2025, 20:26 Владельцам авто на бензине и сжиженном газе: есть способ заправляться выгоднее

04.03.2025, 19:58 Простота, мобильность и самостоятельность: как изменилось поведение туристов в 2024 году

03.03.2025, 21:54 Richmind объявил о начале строительства объектов недвижимости премиум-класса в ОАЭ

03.03.2025, 20:42 Вдохновленные Оскаром: российские бренды поддержали номинацию Борисова

03.03.2025, 20:01 Квартирный вопрос: как мошенники наживаются на пенсионерах в условиях СВО

ВСЕ НОВОСТИ

Инженеры нашли новый способ управления электронами

Наука

Инженеры Национального университета Сингапура (NUS) продемонстрировали новый способ управления электронами в устройстве, выполненном из атомно-тонких материалов и применяя внешние электрические и магнитные поля.

Почти все современные технологии, такие как двигатели, лампочки, персональные компьютеры и полупроводниковые чипы работает на электроэнергии, используя поток электронов, проходящих через устройства. Ведущий разработчик Castro Neto поясняет, что маленькие и быстрые электроны подчиняются странным законам квантовой физики, что делает трудным контролировать их движение.

Для управления электронным поведением, многие полупроводниковые материалы требуют химического допинга, когда в исходный материал помещают небольшие количества посторонних веществ, способных освобождать или поглощать электроны, изменения их концентрацию, что в свою очередь может быть использован для управления токами.

Тем не менее, химический допинг имеет ограничение, так как этот метод вызывает необратимые химические изменения в материале. Чужеродные атомы, внедренные в материал, могут нарушить его естественный порядок, часто маскируя важные электронные состояния чистого вещества.

Исследовательская группа во главе с Neto смогла воспроизвести эффект химического допинга в данном исследовании, используя только внешние электрические и магнитные поля, применяемые к атомно-тонкому материалу, диселениду татана (TiSe2), инкапсулированного с нитридом бора (HBN). Исследователи смогли максимально точно управлять поведением электронов, делая измерения, которые были возможно лишь теоретически. Тонкость двух материалов имеет решающее значение, ограничивая нахождение электронов в двумерном слое материала, на который действуют электрические и магнитные поля.

«В частности, мы могли бы также управлять материалом в состоянии сверхпроводимости, когда электроны движутся по всему материалу без тепла или потери энергии», говорит Neto.

Из-за своей тонкости, двумерные сверхпроводящие материалы имеют преимущества перед традиционными сверхпроводниками, в таких приложениях, портативная магнитно-резонансная томография, например. Или для разработки современных джойстиков для ПК, которые можно найти на www.a-techno.com.ua/182/285/459/296/ в большом ассортименте. Компьютерная игра, с использованием этих универсальных, функциональных манипуляторов, станет производительней, а человек получит максимальное ощущение реальности и комфорта при любой компьютерной игре.

Одной из конкретных исследовательской группы является разработка высокотемпературных двумерных сверхпроводящих материалов. Имеющиеся материалы требуют чрезвычайно холодной температуры -270 ° С для функционирования, исключая такие интересные приложения, как электролинии без потерь энергии, левитирующие поезда.