Последние новости
15.01.2025, 18:56 Премия мира Сунхак 2025: чествование мировых лидеров в области инноваций для мира
15.01.2025, 18:38 KT&G создает узбекскую корпорацию, укрепляющую конкурентоспособность на евразийском рынке
14.01.2025, 19:44 75 лет «Термекс»: компания покажет новинки на крупнейшей выставке отопления и водоснабжения
14.01.2025, 17:16 Финал «Мисс Дубай 2024»: стиль, талант и незабываемая атмосфера
13.01.2025, 20:52 Corn Next представила инновационное экологичное решение проблемы пластикового загрязнения
13.01.2025, 19:48 Huawei и МСОП запустили проект Tech4Nature по защите коралловых рифов Кении
10.01.2025, 20:30 Hisense преобразует будущее домашних развлечений и «умного быта» с помощью инноваций на базе ИИ на выставке CES 2025
10.01.2025, 20:11 Тимофей Кузнецов aka Tiku Digital, о перспективах развития цифрового маркетинга
09.01.2025, 16:37 Morphy Richards расширила свое глобальное присутствие: новые дистрибьюторы и запуск продаж портативного кондиционера
09.01.2025, 16:34 Наушники Timekettle W4 Pro Earbuds с Babel OS запустили двусторонний перевод разговоров в режиме реального времени
Инженеры нашли новый способ управления электронами
Наука
Инженеры Национального университета Сингапура (NUS) продемонстрировали новый способ управления электронами в устройстве, выполненном из атомно-тонких материалов и применяя внешние электрические и магнитные поля.
Почти все современные технологии, такие как двигатели, лампочки, персональные компьютеры и полупроводниковые чипы работает на электроэнергии, используя поток электронов, проходящих через устройства. Ведущий разработчик Castro Neto поясняет, что маленькие и быстрые электроны подчиняются странным законам квантовой физики, что делает трудным контролировать их движение.
Для управления электронным поведением, многие полупроводниковые материалы требуют химического допинга, когда в исходный материал помещают небольшие количества посторонних веществ, способных освобождать или поглощать электроны, изменения их концентрацию, что в свою очередь может быть использован для управления токами.
Тем не менее, химический допинг имеет ограничение, так как этот метод вызывает необратимые химические изменения в материале. Чужеродные атомы, внедренные в материал, могут нарушить его естественный порядок, часто маскируя важные электронные состояния чистого вещества.
Исследовательская группа во главе с Neto смогла воспроизвести эффект химического допинга в данном исследовании, используя только внешние электрические и магнитные поля, применяемые к атомно-тонкому материалу, диселениду татана (TiSe2), инкапсулированного с нитридом бора (HBN). Исследователи смогли максимально точно управлять поведением электронов, делая измерения, которые были возможно лишь теоретически. Тонкость двух материалов имеет решающее значение, ограничивая нахождение электронов в двумерном слое материала, на который действуют электрические и магнитные поля.
«В частности, мы могли бы также управлять материалом в состоянии сверхпроводимости, когда электроны движутся по всему материалу без тепла или потери энергии», говорит Neto.
Из-за своей тонкости, двумерные сверхпроводящие материалы имеют преимущества перед традиционными сверхпроводниками, в таких приложениях, портативная магнитно-резонансная томография, например. Или для разработки современных джойстиков для ПК, которые можно найти на www.a-techno.com.ua/182/285/459/296/ в большом ассортименте. Компьютерная игра, с использованием этих универсальных, функциональных манипуляторов, станет производительней, а человек получит максимальное ощущение реальности и комфорта при любой компьютерной игре.
Одной из конкретных исследовательской группы является разработка высокотемпературных двумерных сверхпроводящих материалов. Имеющиеся материалы требуют чрезвычайно холодной температуры -270 ° С для функционирования, исключая такие интересные приложения, как электролинии без потерь энергии, левитирующие поезда.