Последние новости
10.05.2025, 12:08 Решение CURECA( компании Seegene способно в корне изменить полную автоматизацию тестирования методом ПЦР
10.05.2025, 12:44 Годы культуры Китая и России — мост для сближения народов
10.05.2025, 11:44 Партнерское соглашение NAVEE и Dott для внедрения скутеров V1 Pro нового поколения, коренным образом меняющих городскую мобильность
10.05.2025, 11:18 Kaiyi Auto представила свою новую стратегию развития на мировом рынке
07.05.2025, 20:40 История одной семьи в годы войны оживет на фасаде московской Мэрии
06.05.2025, 20:18 Когда история пахнет хлебом: в Москве состоялась премьера фильма «Корочка хлеба»
06.05.2025, 20:13 CGTN — Как дипломатия первых лиц государств дает новый импульс российско-китайским отношениям?
03.05.2025, 11:57 Инновационный лидер в области устойчивой моды Лиз Хершфилд назначена исполнительным директором Cotton Council International (CCI)
02.05.2025, 11:58 CGTN: Как Китай ускоряет развитие искусственного интеллекта и продвигает высококачественное сотрудничество со странами Глобального Юга
01.05.2025, 15:36 Искусственный интеллект и российские банки: как ИИ решения трансформируют финансовый сектор в 2025 году
Инженеры нашли новый способ управления электронами
Наука
Инженеры Национального университета Сингапура (NUS) продемонстрировали новый способ управления электронами в устройстве, выполненном из атомно-тонких материалов и применяя внешние электрические и магнитные поля.
Почти все современные технологии, такие как двигатели, лампочки, персональные компьютеры и полупроводниковые чипы работает на электроэнергии, используя поток электронов, проходящих через устройства. Ведущий разработчик Castro Neto поясняет, что маленькие и быстрые электроны подчиняются странным законам квантовой физики, что делает трудным контролировать их движение.
Для управления электронным поведением, многие полупроводниковые материалы требуют химического допинга, когда в исходный материал помещают небольшие количества посторонних веществ, способных освобождать или поглощать электроны, изменения их концентрацию, что в свою очередь может быть использован для управления токами.
Тем не менее, химический допинг имеет ограничение, так как этот метод вызывает необратимые химические изменения в материале. Чужеродные атомы, внедренные в материал, могут нарушить его естественный порядок, часто маскируя важные электронные состояния чистого вещества.
Исследовательская группа во главе с Neto смогла воспроизвести эффект химического допинга в данном исследовании, используя только внешние электрические и магнитные поля, применяемые к атомно-тонкому материалу, диселениду татана (TiSe2), инкапсулированного с нитридом бора (HBN). Исследователи смогли максимально точно управлять поведением электронов, делая измерения, которые были возможно лишь теоретически. Тонкость двух материалов имеет решающее значение, ограничивая нахождение электронов в двумерном слое материала, на который действуют электрические и магнитные поля.
«В частности, мы могли бы также управлять материалом в состоянии сверхпроводимости, когда электроны движутся по всему материалу без тепла или потери энергии», говорит Neto.
Из-за своей тонкости, двумерные сверхпроводящие материалы имеют преимущества перед традиционными сверхпроводниками, в таких приложениях, портативная магнитно-резонансная томография, например. Или для разработки современных джойстиков для ПК, которые можно найти на www.a-techno.com.ua/182/285/459/296/ в большом ассортименте. Компьютерная игра, с использованием этих универсальных, функциональных манипуляторов, станет производительней, а человек получит максимальное ощущение реальности и комфорта при любой компьютерной игре.
Одной из конкретных исследовательской группы является разработка высокотемпературных двумерных сверхпроводящих материалов. Имеющиеся материалы требуют чрезвычайно холодной температуры -270 ° С для функционирования, исключая такие интересные приложения, как электролинии без потерь энергии, левитирующие поезда.