Последние новости
13.01.2026, 21:26 Henley & Partners — растущий разрыв в паспортах меняет глобальную мобильность в 2026 году
13.01.2026, 21:27 ITE Hong Kong 2026: ведущая международная ярмарка поставщиков для азиатской туристической индустрии и независимых путешественников
13.01.2026, 20:22 Yaber расширили ассортимент своей продукции на сегмент умных устройств для уборки
13.01.2026, 16:09 Alamar Biosciences объявила о закрытии финансирования за счет конвертируемых облигаций с превышением лимита подписки и о расширении руководства
13.01.2026, 15:15 Oriental Culture Holding LTD объяила о плане специальных денежных дивидендов для вознаграждения акционеров
13.01.2026, 15:42 Компания Astronergy выпускает модуль ASTRO N7 Pro для обеспечения профессиональной производительности
13.01.2026, 15:58 CATL открыла крупнейший на Ближнем Востоке объект по послепродажному обслуживанию новых энергоресурсов в Эр-Рияде
13.01.2026, 11:02 Почему рост складов в Казахстане не решает проблему мультитемпературных хабов
12.01.2026, 13:22 Возможностями платформы «Город идей» воспользовались более 650 тысяч жителей столицы
12.01.2026, 11:26 CIFF Гуанчжоу 2026: выставка мебели для дома продемонстрирует глобальные инновации в области мебели и связи цепочек поставок
Кремний чип со встроенным лазером
Наука

Физики Технического университета Мюнхена (ТУМ) разработали нанолазер в тысячу раз тоньше человеческого волоса. Благодаря уникальному процессу, нанопроволочные лазеры растут прямо на кремниевом чипе, что делает возможным экономично производить высокопроизводительные фотонные компоненты. Разработка откроет путь для быстрой и эффективной обработки данных со светом в будущем.
«Миниатюризация электроники практически достигает своих физических пределов. Сегодня транзисторы размером с всего лишь несколько нанометров. Дальнейшие сокращения являются чудовищно дорогими», говорит профессор Джонатан Финли. «Повышение эффективности достижимо, лишь путем замены электронов фотонами, то есть частицами света».
Кремниевые фотоннные чипы уже существуют. Однако источники света для передачи данных должен быть прикреплены к кремнию в сложном производственном процессе и исследователи во всем мире искали альтернативные подходы. Группе Финли удалось разработали процесс размещения нанолазеров непосредственно на кремниевых чипах оригинальным способом.
Сейчас нанопроволочный лазер из арсенида галлия производит инфракрасный свет заданной волны и при импульсном возбуждении. «В будущем, мы хотим изменить длину волны излучения и другие лазерные параметров для лучшей температурной стабильностьи управления и распространения света при непрерывном возбуждении в кремниевых чипах», добавляют авторы.
