$81.23 €93.84

Последние новости

08.11.2025, 00:55 Россия формирует новую философию здоровья в странах БРИКС

07.11.2025, 09:41 Natural Field представит «Белую книгу ашваганды» на форуме FTA в Ханчжоу

07.11.2025, 08:27 BingX добавляет ведущие реальные активы (RWA) в линейку бессрочных контрактов, расширяя доступ к мировым рынкам

06.11.2025, 19:39 Go Global Travel трансформируется в Yanolja Go Global, открывая новую эру глобальных инноваций в сфере B2B-туризма

06.11.2025, 19:31 HUAWEI WATCH GT 6 Series представила часовые циферблаты с Венецианской биеннале, соединяя искусство с интеллектуальным стилем жизни

06.11.2025, 18:23 Группа «Уралхим» отправила гуманитарную партию удобрений объемом 30 000 тонн в Бангладеш

06.11.2025, 18:50 Взгляд Intelion. Год после закона о майнинге: рынок взрослеет

06.11.2025, 18:12 Праздник плавания в честь Дня народного единства устроила команда Swimlife

06.11.2025, 18:26 Логистика в тепле: как рынок терморежима адаптируется к новым реалиям

06.11.2025, 16:15 Психология детских протестов: что стоит за словами «не хочу»

ВСЕ НОВОСТИ

Инженеры вырастили оксидный полупроводник в один атом толщиной

Наука

Инженеры южнокорейского UNIST разработали новый метод изготовления тончайших оксидных полупроводников, толщиной в один атом. Это может открыть новые возможности для тонких, прозрачных и гибких электронных устройств, в том числе ультра-малых датчиков.

Новые ультратонкие оксидные полупроводники были создан группой ученых под руководством Zonghoon Lee. В своих экспериментах Zonghoon Lee и его коллегам удалось продемонстрировать формирование двумерного оксида цинка (ZnO), путем выращивания полупроводника на слое графена. Это самый тонкий гетероэпитаксиальный полупроводниковый оксид на однослойном графене, говорят авторы.

«Гибкие высокопроизводительные устройства крайне необходимы для обычной носимой электроники, которая привлекают внимание в последнее время. С помощью этого нового материала, мы можем достичь действительно высокопроизводительных гибких устройств», утверждают разработчики. Графен обладает превосходными свойствами проводимости, но он не может быть непосредственно использован в качестве альтернативы кремнию в полупроводниковой электронике, поскольку не имеет ширину запрещенной зоны. Запрещеннуая зона дает возможность запускать и останавливать поток электронов, которые несут электричество. В графене электроны двигаются случайным образом с постоянной скоростью, независимо от их энергии, и не могут быть остановлены.

Чтобы решить эту проблему, исследовательская группа решила вырастить монослой ZnO. «Гетероэпитаксиальные тончайшие 2D оксидные полупроводники на графене имеют потенциал для будущих приложений в оптоэлектронных устройствах, связанных с высокой оптической прозрачностью и гибкостью. Это исследование может привести к созданию нового класса 2D гетероструктур», добавил Lee.