Последние новости
30.06.2025, 18:33 Шины российского производства задействованы в тестах грузовиков нового поколения
29.06.2025, 18:22 Презентация проекта индустриальной многоэтажной недвижимости прошла на форуме «Движение» в Сочи
29.06.2025, 12:55 Для юных гостей фестиваля «Театральный бульвар» подготовили специальную программу
28.06.2025, 11:07 В рамках «Лета в Москве» пройдет новый сезон волонтерского проекта «Время добра»
28.06.2025, 10:13 CIRED 2025: Huawei выпускает новые функции IDS для цифровой поддержки будущих распределительных сетей
28.06.2025, 10:33 CATL и Ellen MacArthur Foundation разделяют стремление к циркулярному аккумуляторному будущему
28.06.2025, 10:30 Goa Tourism приняла участие в казахстанско-индийском бизнес-форуме по туризму в Алматы
28.06.2025, 10:03 Новый отчет показывает, что большинство европейских компаний не полностью готовы к Европейскому закону о доступности
28.06.2025, 10:07 АО «Кимрская фабрика им. Горького» представляет инновационный подход в ходе бизнес-миссии в МШУ «Сколково»
27.06.2025, 20:46 EarthDaily открывает новую эру в наблюдении Земли с запуском спутника Landmark
Ученые повысили температуру сверхпроводимости в легированном Q-углероде
Наука
Команда ученых Университета Северной Каролины значительно увеличила температуру, при которой материалы на основе углерода действуют как сверхпроводники. Исследователи во главе с Джей Нарайан использовали в своих экспериментах легированный бором Q-углеродный материал.
Предыдущий рекорд сверхпроводимости в алмазе, легированном бором, составлял 11 Кельвинов, или минус 439,60 градуса по Фаренгейту. Было обнаружено, что легированный бором Q-углерод является сверхпроводящим от 37K до 57K, что составляет минус 356,80 градусов по Фаренгейту. «Переход с 11K до 57K является большим скачком для обычной сверхпроводимости BCS», говорит Нарайан.
Обычные материалы, которые проводят электричество, во время передачи теряют много энергии. Известно, что сверхпроводники могут обрабатывать гораздо более высокие токи на квадратный сантиметр и практически не терять энергию, однако они обладают этими свойствами при низких температурах. Идентификация способов достижения сверхпроводимости при более высоких температурах без применения высокого давления является активной областью исследований материалов.
Чтобы сделать Q-углерод, легированный бором, исследователи делают смесь из аморфного углерода и бора. Затем она подвергается воздействию лазерного импульса, продолжающегося всего несколько наносекунд.
«Благодаря включению бора в Q-углерод мы устраняем ферромагнитные свойства материала и придаем ему сверхпроводящие свойства», говорят авторы открытия. «Мы планируем оптимизировать материал, чтобы повысить температуру, при которой он является сверхпроводящим».