$79.02 €90.56

Последние новости

22.11.2025, 17:36  NABR — Постоянный комитет СИТЕС выпустил Оценочный доклад практики разведения длиннохвостых макак

22.11.2025, 17:12  Xinhua Silk Road — Интервью: возобновление связей Шелкового пути, когда китайский фарфор Blanc de Chine встречается с итальянской майоликой

22.11.2025, 16:30 Озеленение учебных пространств в условиях кризиса

19.11.2025, 14:53 V Международный форум «СМИ и цифровые технологии перед вызовом информационного и исторического фальсификата» завершил работу в Москве

18.11.2025, 12:39 CGTN: Безрассудные слова, реальные последствия: г-жа Такаити переходит черту

18.11.2025, 12:12 BPIC отмечает пятую годовщину: развивая сотрудничество в рамках БРИКС

17.11.2025, 11:18 Дмитрий Гавдур, СЕО Lerna: как ИИ меняет EdTech и помогает масштабировать бизнес на международном уровне

15.11.2025, 13:30 Университет Косыгина представил авторские костюмы на выставке «Традиционная Россия» в Государственной Думе

15.11.2025, 11:22 В Пекине прошла конференция FOTON Global Partners 2026: глобальная стратегия по созданию коммерческого транспорта мирового класса

15.11.2025, 10:00 57-я Китайская международная мебельная выставка-ярмарка в Гуанчжоу представляет новую тему «CONNECT • CREATE» и обновленный фирменный образ

ВСЕ НОВОСТИ

Ученые повысили температуру сверхпроводимости в легированном Q-углероде

Наука

Команда ученых Университета Северной Каролины значительно увеличила температуру, при которой материалы на основе углерода действуют как сверхпроводники. Исследователи во главе с Джей Нарайан использовали в своих экспериментах легированный бором Q-углеродный материал.

Предыдущий рекорд сверхпроводимости в алмазе, легированном бором, составлял 11 Кельвинов, или минус 439,60 градуса по Фаренгейту. Было обнаружено, что легированный бором Q-углерод является сверхпроводящим от 37K до 57K, что составляет минус 356,80 градусов по Фаренгейту. «Переход с 11K до 57K является большим скачком для обычной сверхпроводимости BCS», говорит Нарайан.

Обычные материалы, которые проводят электричество, во время передачи теряют много энергии. Известно, что сверхпроводники могут обрабатывать гораздо более высокие токи на квадратный сантиметр и практически не терять энергию, однако они обладают этими свойствами при низких температурах. Идентификация способов достижения сверхпроводимости при более высоких температурах без применения высокого давления является активной областью исследований материалов.

Чтобы сделать Q-углерод, легированный бором, исследователи делают смесь из аморфного углерода и бора. Затем она подвергается воздействию лазерного импульса, продолжающегося всего несколько наносекунд.

«Благодаря включению бора в Q-углерод мы устраняем ферромагнитные свойства материала и придаем ему сверхпроводящие свойства», говорят авторы открытия. «Мы планируем оптимизировать материал, чтобы повысить температуру, при которой он является сверхпроводящим».