Последние новости
18.12.2025, 17:49 Компания TCL представит будущее в рамках портфеля передовых визуальных инноваций и продуктов с поддержкой ИИ на выставке CES 2026
18.12.2025, 17:09 ИИ для поиска истины создает крупнейший в мире портал энциклопедических знаний — в 6000 раз больше Википедии
18.12.2025, 17:02 Компания Hisense возглавит ориентированную на человека эволюцию дисплеев на выставке CES 2026
18.12.2025, 17:41 Резонанс через действие, стремление через настойчивость – ESG-практики Chery в поддержку Азиатских паралимпийских игр
17.12.2025, 15:32 Сложность майнинга биткоина упала третий раз подряд. О чем это говорит
17.12.2025, 10:39 Налоги-2026: как бизнесу не попасть под прицел ФНС. Лайфхаки от юристов
16.12.2025, 19:57 Узбекистан ускоряет развитие индустриальных зон для привлечения международного капитала
16.12.2025, 19:20 Елена Батурина выводит проекты фонда «Ноосфера» на новый уровень
16.12.2025, 17:08 Объединение потребителей предупредило о правовом хаосе при региональных запретах вейпов
14.12.2025, 15:40 CGTN: Как Китай задает тон экономической работе в 2026 году?
Ученые повысили температуру сверхпроводимости в легированном Q-углероде
Наука
Команда ученых Университета Северной Каролины значительно увеличила температуру, при которой материалы на основе углерода действуют как сверхпроводники. Исследователи во главе с Джей Нарайан использовали в своих экспериментах легированный бором Q-углеродный материал.
Предыдущий рекорд сверхпроводимости в алмазе, легированном бором, составлял 11 Кельвинов, или минус 439,60 градуса по Фаренгейту. Было обнаружено, что легированный бором Q-углерод является сверхпроводящим от 37K до 57K, что составляет минус 356,80 градусов по Фаренгейту. «Переход с 11K до 57K является большим скачком для обычной сверхпроводимости BCS», говорит Нарайан.
Обычные материалы, которые проводят электричество, во время передачи теряют много энергии. Известно, что сверхпроводники могут обрабатывать гораздо более высокие токи на квадратный сантиметр и практически не терять энергию, однако они обладают этими свойствами при низких температурах. Идентификация способов достижения сверхпроводимости при более высоких температурах без применения высокого давления является активной областью исследований материалов.
Чтобы сделать Q-углерод, легированный бором, исследователи делают смесь из аморфного углерода и бора. Затем она подвергается воздействию лазерного импульса, продолжающегося всего несколько наносекунд.
«Благодаря включению бора в Q-углерод мы устраняем ферромагнитные свойства материала и придаем ему сверхпроводящие свойства», говорят авторы открытия. «Мы планируем оптимизировать материал, чтобы повысить температуру, при которой он является сверхпроводящим».
