Последние новости
15.01.2025, 18:56 Премия мира Сунхак 2025: чествование мировых лидеров в области инноваций для мира
15.01.2025, 18:38 KT&G создает узбекскую корпорацию, укрепляющую конкурентоспособность на евразийском рынке
14.01.2025, 19:44 75 лет «Термекс»: компания покажет новинки на крупнейшей выставке отопления и водоснабжения
14.01.2025, 17:16 Финал «Мисс Дубай 2024»: стиль, талант и незабываемая атмосфера
13.01.2025, 20:52 Corn Next представила инновационное экологичное решение проблемы пластикового загрязнения
13.01.2025, 19:48 Huawei и МСОП запустили проект Tech4Nature по защите коралловых рифов Кении
10.01.2025, 20:30 Hisense преобразует будущее домашних развлечений и «умного быта» с помощью инноваций на базе ИИ на выставке CES 2025
10.01.2025, 20:11 Тимофей Кузнецов aka Tiku Digital, о перспективах развития цифрового маркетинга
09.01.2025, 16:37 Morphy Richards расширила свое глобальное присутствие: новые дистрибьюторы и запуск продаж портативного кондиционера
09.01.2025, 16:34 Наушники Timekettle W4 Pro Earbuds с Babel OS запустили двусторонний перевод разговоров в режиме реального времени
Графеновый фототранзистор для оптических технологий создан учеными
Наука
В Университете Пердью решили проблему, которая сдерживала развитие высокочувствительных оптических устройств из графена.
Графен, представляющий собой очень тонкий слой углерода, является перспективным для оптоэлектроники, и инженеры пытаются разработать фотоприемники на его основе, что имеет решающее значение для многих технологий. Однако типичные фотоприемники из графена имеют небольшую площадь, которая чувствительна к свету, что ограничивает их производительность.
Исследователи под руководством Yong Chen решили эту проблему, путем объединения углеродного материала с большой карбидной кремниевой подложкой, создав графеновые полевые транзисторы или GFETs, которые могут быть активированы светом. Высокоэффективные фотоприемники могут быть полезны для многих приложений, в том числе высокоскоростных коммуникаций и сверхчувствительных камер для астрофизики, а также носимой электроники. Массивы на основе транзисторов из графена также помогут в разработке дисплеев высокого разрешения.
«Наш подход позволяет сделать очень чувствительную камеру , где у вас есть относительно небольшое количество пикселей , но она будет иметь высокое разрешение», говорит соавтор Igor Jovanovic.
Результаты показывают, что устройство реагирует на свет, даже когда карбид кремния освещается на больших расстояниях от графена. Производительность может быть увеличена в 10 раз в зависимости от того, какая часть материала освещена. Новый фототранзистор является «позиционно-чувствительным», означая, что он может определить место, откуда исходит свет, что очень важно для приложений визуализации и детекторов. Кроме того, световые детекторы могут быть использованы в устройствах, называемых сцинтилляторами, которые используются для обнаружения излучения.