Последние новости
18.07.2025, 22:04 Ретроралли «СТОЛИЦА.RODIS Классик Тур» стало частью празднования Дня московского транспорта
17.07.2025, 22:45 Отчет Bitget Wallet: игры и путешествия — главные сферы интересов при использовании криптовалютных платежей
17.07.2025, 21:31 Всемирный день навыков молодежи 2025: Shanghai Electric продвигает развитие ИИ и цифровых навыков в рамках Глобального инновационного турнира
17.07.2025, 15:27 Приз имени Юрия Лужкова получат спортсмены на фестивале The BOWL
17.07.2025, 13:42 Предпоказ уникальных янтарных лотов организован для гостей AmberForum и журналистов
17.07.2025, 10:35 Rwazi собирает 12 млн долларов, чтобы заменить каждое интуитивное решение советом цифрового помощника на основе ИИ
17.07.2025, 10:31 Инициатива по развитию человеческого потенциала (HCI) публикует аналитический отчет за 2025 год
16.07.2025, 08:34 Vantage блистает на выставке Money Expo Colombia 2025
12.07.2025, 21:16 Алтай ждёт гостей-единомышленников на фестивале «ВОТЭТНО!»
12.07.2025, 14:17 От Музея Фаберже в Петербурге запустили новые водные маршруты
Новый метаматериал повышает эффективность термофотоэлектрических клеток
Наука
Физики Австралийского национального университета и Калифорнийского университета в Беркли обнаружили новые свойства в наноматериале, которые открывают новые возможности в развитии высокоэффективных термофотоэлектрических клеток.
Исследователи во главе с Сергеем Круком продемонстрировали новый искусственный материал, или метаматериал, который светится необычным способом при нагревании. Полученные результаты могут провести революцию в развитии термофотоэлектрических клеток, которые преобразуют тепло в электричество. «Термофотоэлектрические клетки имеют потенциал, быть гораздо более эффективным, чем солнечные батареи», поясняет Крук. «Наша метаматериал преодолевает ряд препятствий и поможет раскрыть весь потенциал термофотоэлектрических клеток».
Термофотоэлектрические клетки, как предполагают ученые, более чем в два раза эффективнее обычных солнечных батарей. Они не нуждаются в прямых солнечных лучах для выработки электроэнергии, а способны собирать тепло из окружающей среды в виде инфракрасного излучения. Они также могут перерабатывать тепло, излучаемое горячими двигателями.
Метаматериал, созданный Круком и его коллегами, состоит из крошечных наноскопических структур из золота и фторида магния, и излучает тепло в определенных направлениях. Геометрия метаматериала может быть изменена так, чтобы испускать излучение в конкретной области спектра, в отличие от стандартных материалов, которые испускают тепло во всех направлениях. Это делает его идеальным для использования в качестве излучателя в паре с термофотоэлектрической ячейкой. Крук говорит: «Размер одного строительного блока метаматериала настолько мал, что мы могли бы поместить более двенадцати тысяч на поперечном сечении человеческого волоса».
Эффективность термофотоэлектрических клеток на основе нового метаматериала может быть дополнительно улучшена, если излучатель и приемник имеют лишь наноскопический разрыв между собой. В этой конфигурации, радиационный теплообмен между ними может быть более чем в десять раз эффективнее, чем между обычными материалами, поясняют авторы.