$76.09 €88.7

Последние новости

02.12.2025, 17:21 «Уралкалий» — генеральный партнер X Пермского инженерно-промышленного форума

02.12.2025, 08:27 Владимир Плякин предупредил о возможном повышении исполнительского сбора в России

01.12.2025, 17:04 Тормозные колодки, маркетинг и реальность авторынка

01.12.2025, 11:07 В Москве состоялся крупнейший форум об инвестициях Private Money 2025

01.12.2025, 09:59 Фонд Vantage Foundation пожертвовал 1 миллион гонконгских долларов на поддержку жителей, пострадавших от пожара в Гонконге

01.12.2025, 09:45 Чэнду становится глобальным инновационным центром в 14-й пятилетке

01.12.2025, 08:09 Как технологии меняют культуру строительства загородных домов

29.11.2025, 21:11 Музей ароматов «Сюэлэй»: глобальная достопримечательность в мире парфюмерии и новый объект паломничества для ценителей ароматов

28.11.2025, 22:34 Перспективы развития строительной отрасли в условиях изменения экономической политики

28.11.2025, 16:12 Инженеры и работники KAMA TYRES получили награды премии «Человек труда»

ВСЕ НОВОСТИ

Новый метаматериал повышает эффективность термофотоэлектрических клеток

Наука

Физики Австралийского национального университета и Калифорнийского университета в Беркли обнаружили новые свойства в наноматериале, которые открывают новые возможности в развитии высокоэффективных термофотоэлектрических клеток.

Исследователи во главе с Сергеем Круком продемонстрировали новый искусственный материал, или метаматериал, который светится необычным способом при нагревании. Полученные результаты могут провести революцию в развитии термофотоэлектрических клеток, которые преобразуют тепло в электричество. «Термофотоэлектрические клетки имеют потенциал, быть гораздо более эффективным, чем солнечные батареи», поясняет Крук. «Наша метаматериал преодолевает ряд препятствий и поможет раскрыть весь потенциал термофотоэлектрических клеток».

Термофотоэлектрические клетки, как предполагают ученые, более чем в два раза эффективнее обычных солнечных батарей. Они не нуждаются в прямых солнечных лучах для выработки электроэнергии, а способны собирать тепло из окружающей среды в виде инфракрасного излучения. Они также могут перерабатывать тепло, излучаемое горячими двигателями.

Метаматериал, созданный Круком и его коллегами, состоит из крошечных наноскопических структур из золота и фторида магния, и излучает тепло в определенных направлениях. Геометрия метаматериала может быть изменена так, чтобы испускать излучение в конкретной области спектра, в отличие от стандартных материалов, которые испускают тепло во всех направлениях. Это делает его идеальным для использования в качестве излучателя в паре с термофотоэлектрической ячейкой. Крук говорит: «Размер одного строительного блока метаматериала настолько мал, что мы могли бы поместить более двенадцати тысяч на поперечном сечении человеческого волоса».

Эффективность термофотоэлектрических клеток на основе нового метаматериала может быть дополнительно улучшена, если излучатель и приемник имеют лишь наноскопический разрыв между собой. В этой конфигурации, радиационный теплообмен между ними может быть более чем в десять раз эффективнее, чем между обычными материалами, поясняют авторы.