Последние новости
03.07.2025, 18:09 Творчество, семья, звёзды: как Aguteens снова объединил поколение мечтателей
03.07.2025, 17:55 Калининградский янтарный комбинат готовит к аукциону инклюз с тараканом
02.07.2025, 17:10 Рейс вдохновения: благотворительный концерт Агутина и Socrat & Lera на высоте 10 000 метров
02.07.2025, 08:10 Вкусная еда и покой. Libretta назвала оптимальную формулу для женщин в особенные дни
01.07.2025, 11:35 Hisense разместила рекламу с лозунгом «AI YOUR LIFE» на Клубном чемпионате мира по футболу FIFA Club World Cup 2025
01.07.2025, 10:30 Информационно-просветительское мероприятие инициативы Climate Challenge в Европе прошло в Париже
01.07.2025, 10:08 Компания Yutong представила электрический междугородний автобус нового поколения IC12E на саммите UITP Summit Hamburg 2025
01.07.2025, 09:54 В Москве прошел «Чемпионат грузинских бабушек» по приготовлению хинкали
01.07.2025, 09:52 Открытие скульптурной композиции «Граф Орлов» в честь 255-летия победы русского флота в Чесменском сражении
01.07.2025, 08:03 Грузинские бабушки готовят хинкали вкуснее шеф-поваров!
Новый мультиферроик приближает эру энергоемкой электроники
Наука
Исследователи Университета Мичигана и Национальной лаборатории Лоренса Беркли сконструировали материал, который может привести к созданию нового поколения вычислительных устройств, повышая их вычислительную мощность на долю энергии, по сравнению с современной электроникой.
Магнитоэлектрические мультиферроики сочетают в себе электрические и магнитные свойства при комнатной температуре, объясняет ведущий разработчик John Heron. «Перед этой работой, был только один мультиферроик, магнитные свойства которых можно регулировать с помощью электричества при комнатной температуре», сказал Heron. «Новый материал — это огромный шаг вперед».
Мультиферроики, работающие при комнатной температуре, являются перспективными в области электроники, поскольку требуют гораздо меньше энергии для чтения и записи данных, чем современные устройства на основе полупроводников. Кроме того, эти данные не обращается в нуль при выключении питания. Такие свойства позволяют конструировать устройства, которые требуют короткие импульсы электроэнергии вместо постоянного потока, нужного сейчас для электроники. Такая технология требует в 100 раз меньше энергии, в сравнении с существующими стандартами
Соавтор разработки Ramamoorthy Ramesh говорит: «Электроника является наиболее быстро растущим потребителем энергии во всем мире. Сегодня около 5 процентов от общего мирового потребления энергии тратится на электронику, и по прогнозам, эта цифра вырастет до 40-50 процентов к 2030 году, если мы продолжим в том же темпе».
Для того, чтобы создать новый материал, исследователи усовершенствовали атомарное пленки гексагонального оксида железа лютеция (LuFeO3), материала, который обладает сегнетоэлектрическими, но не магнитными свойствами. Оксид лютеция железа состоит из чередующихся монослоев оксида лютеция и оксида железа. Затем инженеры использовали технику молекулярно-лучевой эпитаксии, добавив один дополнительный монослой оксида железа на каждые 10 атомных повторов.
«Нам удалось достичь новой атомной структуры , которая проявляет сильные магнитные свойства», говорят авторы. Результатом стал новый материал, который сочетает в себе свойства оксида лютеция с магнитными свойствами оксида железа, с возможностями мультиферроика при комнатной температуре.
Heron и его коллеги считают, что жизнеспособное устройство на основе мультиферроиков, скорее всего, появится через несколько лет, и их работа приближает ученых к созданию электроники, которая потребляет меньше энергии.