$78.84 €93.01

Последние новости

04.07.2025, 16:28 Планета Лайка расширила линейку продукции для ухода за домашними животными

04.07.2025, 16:03 Доверие как фундамент: как построить прибыльный бьюти-бизнес, основанный на честности

04.07.2025, 15:26 Майнинг в 2025: стабильность и устойчивость важнее мощностей

04.07.2025, 14:50 Благодаря BlackLine компания Creditsafe добивается окупаемости инвестиций (ROI) на уровне 234 % и побеждает в конкурсе Nucleus Research ROI Awards 2025 

04.07.2025, 13:12 Новая версия Р7 команда для iOS: обмен контентом и поиск

04.07.2025, 13:49 Древний китайский центр по изготовлению изделий из бронзы — город Баоцзи — способствует культурному обмену в Казахстане

04.07.2025, 13:56 Bitget Wallet сокращает комиссии за ончейн-переводы TRON USDT на 50% благодаря обновлению GetGas

04.07.2025, 13:19 Bitget заключает партнёрство с Veles для предоставления пользователям продвинутых криптовалютных торговых ботов

04.07.2025, 13:37 От анализа к результату: BingX AI превращается в помощника по криптоторговле с полным спектром услуг

04.07.2025, 12:58 SINEXCEL вносит вклад в разработку стандартов систем хранения энергии уровня энергосетей для развития отрасли 

ВСЕ НОВОСТИ

Ученые усовершенствовали эффект термокапиллярности

Наука

Команда ученых Массачусетского технологического института разработала новый способ перемещения капель жидкости по поверхности контролируемым образом. Метод может открыть новые возможности для новых микрофлюидальных устройств, технологий антиобледенения, самоочищающихся поверхностей и высокоэффективных конденсаторов.

Новая система использует разницу в температуре, которая подталкивает капельки воды или других жидкостей по гладкой поверхности, позволяя точно контролировать их маршрут, просто нагревая и охлаждая поверхность.

Различия в температуре на поверхности вызывают изменение в поверхностном натяжении капли, но метод работает только в случае, если поверхность обработана соответствующим образом.

Ученые во главе с Kripa Varanasi провели текстурирование поверхности на микроуровне, а затем пропитали слоем масла. Эта смазка делает поверхность скользкой для капель. Кроме того, капли имеют относительно большую площадь контакта с поверхностью, что позволяет ей перемещаться с более высокой движущей силы. В противоположность этому, капельки на супергидрофобных поверхностях, не двигаются, так как их площадь контакта слишком мала и градиента температуры не будет достаточно для движения.

Основной эффект термокапиллярного движения был продемонстрирован ранее другими исследователями, но и в этих случаях процесс требует очень больших температурных различий, что делает его непригодным для большинства практических применений. Новая система, благодаря скользкой поверхности, требует гораздо меньших изменений температуры и значительно ускоряет движение капель, продвигая их до 10 раз быстрее.

«Давно предпринимались попытки использовать термокапиллярность для приведения в движение капель воды на поверхности», говорит Varanasi, но только сейчас «капельки могут быть перемещены при значительных скоростях», что особенно полезно для многих приложений.

Лежащая в основе физика аналогична «слезы» видели в бокалов, где разница поверхностного натяжения, вызванные испарением спирта может привести к образованию капель вина путешествовать вверх по стороне стекла. В этом случае также, термокапиллярный движение обусловлено различием поверхностного натяжения в различных частях капельке.

Процесс также может найти применение в таких областях, как антиобледенительные системы самолетов и других поверхностей, или в разработке мощных конденсаторов. Концепция также может найти применение для исследований в космосе, в условиях микрогравитации.