Последние новости
12.05.2025, 16:45 Россия – это не про лавандовый раф: «X5 Клуб» изучил предпочтения россиян в кофе
10.05.2025, 12:08 Решение CURECA( компании Seegene способно в корне изменить полную автоматизацию тестирования методом ПЦР
10.05.2025, 12:44 Годы культуры Китая и России — мост для сближения народов
10.05.2025, 11:44 Партнерское соглашение NAVEE и Dott для внедрения скутеров V1 Pro нового поколения, коренным образом меняющих городскую мобильность
10.05.2025, 11:18 Kaiyi Auto представила свою новую стратегию развития на мировом рынке
10.05.2025, 11:04 CGTN: Углубление культурных обменов придаёт новый импульс российско-китайской дружбе
10.05.2025, 10:09 NDC Partnership запустила инструмент для планирования и привлечения климатических инвестиций
07.05.2025, 20:40 История одной семьи в годы войны оживет на фасаде московской Мэрии
06.05.2025, 20:18 Когда история пахнет хлебом: в Москве состоялась премьера фильма «Корочка хлеба»
06.05.2025, 20:13 CGTN — Как дипломатия первых лиц государств дает новый импульс российско-китайским отношениям?
Библиотека паттернов Panasonic и SVL может использоваться в системах умного дома на базе ИИ
Компании

Созданная ими библиотека паттернов сможет использоваться в системах умного дома на базе искусственного интеллекта
Сделать умный дом по-настоящему умным и помочь ему адекватно воспринимать действия своих хозяев помогут исследования японской компании Panasonic и лаборатории знаменитого Стэндфордского университета – Stanford Vision and Learning Lab (SVL), специализирующейся на разработках в области компьютерного зрения, искусственного интеллекта и роботизации. В середине октября стороны представили и открыли для разработчиков первую и пока крупнейшую (по состоянию на 15 октября 2020 г.) в мире библиотеку Home Action Genome – собрание мультимодальных образцов бытового поведения людей. Кроме того, Panasonic и SVL запустили конкурс по разработке компьютерных алгоритмов, позволяющих точно распознавать действия людей, на базе новой библиотеки.
Одной из главных проблем в развитии систем умного дома до сих пор оставалось обучение машин пониманию и адекватной трактовке всего, что происходит перед ними. Существующие базы данных были небольшими и состояли преимущественно из аудио и картинок.
Новая библиотека содержит обширный набор изображений и количественных показателей, дополненных данными с многочисленных сенсоров, в т.ч. видео и тепловых, которые описывают ситуации, ежедневно происходящие практически в каждом доме. В общей сложности библиотека включает 3500 сценариев действий, которые могут выполняться разными людьми в разных местах. Все действия разделены на 70 категорий. Каждый из таких наборов содержит аннотацию, однозначно обозначающую происходящее.
Например, чтобы определить, что делает человек на изображении, система учитывает данные:
- видеокамеры;
- инфракрасного датчика (где конкретно находится человек, какие части его тела в данный момент теплее, находятся в движении);
- микрофона (сопровождается ли действие звуком и насколько громким);
- RGB-аналитики (данные об интенсивности для красного, зеленого и синего видимого света);
- датчика освещенности (наличие и интенсивность внутреннего освещения в комнате);
- гироскопических датчиков и акселерометров (данные об угловой скорости и ускорении человека/ его рук);
- геомагнитного датчика.
Проанализировав и сравнив полученную информацию с существующими сценариями, умный дом сможет однозначно определить, что его хозяин бреется, и сделать соответствующий вывод: например, потом он пойдет пить утренний кофе, а значит, нужно включить кофемашину.
Или другой пример, описывающий непосредственный процесс мышления умного дома. Система определяет не только то, что человек в принципе находится в прачечной, но и его конкретные операции – как он подошел к стиральной машине, положил в нее белье, затем достал его. По сумме всех этих операций она сможет однозначно заключить, что еженедельная стирка закончена, и следует активировать следующий алгоритм. Например, через 10 минут выключить свет и включить вентиляцию в прачечной.
Разработчики систем искусственного интеллекта смогут воспользоваться библиотекой Panasonic и SVL для создания собственных AI-алгоритмов и решений, облегчающих жизнь и быт людей, что является основополагающей миссией корпорации Panasonic.
Кроме того, SVL разработала и представила программу видеоматериалов для студентов и разработчиков систем машинного зрения и т.п. https://camp-workshop.stanford.edu/
Одно из наиболее интересных выступлений, объясняющих актуальность подобной библиотеки действий, – доклад Ивана Лаптева, старшего исследователя центра INRIA Paris и главы учёного совета VisionLabs, доступен по ссылке https://www.youtube.com/watch?v=jhHbShSg09Y&feature=youtu.be
Для получения дополнительной информации обращайтесь в агентство Дайнемик Коммуникейшнс / Dynamic Communications по адресу http://dynamicmoscow.com